EE 435

Lecture 26

Data Converter Performance Characterization



Review from last lecture

Performance Characterization of Data Converters

« Static characteristics
— Resolution
— Least Significant Bit (LSB)
— Offset and Gain Errors
— Absolute Accuracy
— Relative Accuracy
— Integral Nonlinearity (INL)
— Differential Nonlinearity (DNL)
— Monotonicity (DAC)
— Missing Codes (ADC)
— Low-f Spurious Free Dynamic Range (SFDR)
— Low-f Total Harmonic Distortion (THD)
— Effective Number of Bits (ENOB)
— Power Dissipation



Review from last lecture

Performance Characterization of Data Converters

* Dynamic characteristics
— Conversion Time or Conversion Rate (ADC)
— Settling time or Clock Rate (DAC)

— Sampling Time Uncertainty (aperture uncertainty or
aperture jitter)

— Dynamic Range

— Spurious Free Dynamic Range (SFDR)

— Total Harmonic Distortion (THD)

— Signal to Noise Ratio (SNR)

— Signal to Noise and Distortion Ratio (SNDR)
— Sparkle Characteristics

— Effective Number of Bits (ENOB)



Review from last lecture

Offset (for DAC)
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Offset

» Offset strongly (totally) dependent upon performance at a single point

» Probably more useful to define relative to a fit of the data



Review from last lecture

Offset (ror pac)
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Offset relative to fit of data




Review from last lecture

Offset (ror pac)
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Though usually more useful, not standard (more challenging to test)
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Offset relative to fit of data



Gain and Gain Error
For DAC
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Gain error determined after offset is subtracted from output



Offset

For ADC the offset is (assuming & g is the ideal first transition point)
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(If ideal first transition point is not &, o5, offset is shift from ideal)



Offset

For ADC the offset is
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» Offset strongly (totally) dependent upon performance at a single point

* Probably more useful to define relative to a fit of the data



Offset

For ADC the offset is

A XouT

C7
Cs
Cs
Cy
Cs
C:
Ci

Co

Fit Line

—t——+—f—

—>{ I<— XorrseT

Offset relative to fit of data



Gain and Gain Error
For ADC
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Gain error determined after offset is subtracted from output



Gain and Offset Errors

Fit line would give better indicator of error in gain but less practical to
obtain in test

Gain and Offset errors of little concern in many applications

Performance characteristic of interest often nearly independent of gain
and offset errors

Can be trimmed in field if gain or offset errors exist.



Integral Nonlinearity (DAC)

Nonideal DAC
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Integral Nonlinearity (DAC)

Nonideal DAC
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Integral Nonlinearity (DAC)

Nonideal DAC

INL=Zour (k)-Zor (k)

INL=_max {INLy|}
0<k<N-1



Integral Nonlinearity (DAC)

Nonideal DAC

s Xout
o

./
®
i A
®
]
/ Co Cq éz -




Integral Nonlinearity (DAC)

Nonideal DAC
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INL often expressed in LSB ./. /
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* INL is often the most important parameter of a DAC

* INL, and INL,_, are O (by definition)

* There are N-2 elements in the set of INL, that are of concern

* INL is almost always nominally O (i.e. designers try to make it 0)

* INL is a random variable at the design stage

* INL, is a random variable for 0<k<N-1

« INL, and INLk+j are almost always correlated for all k,j (ot incl 0, N-1)

* Fit Line is a random variable

» INL is the N-2 order statistic of a set of N-2 correlated random variables



Integral Nonlinearity (DAC)
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At design stage, INL characterized by standard deviation of the random variable
Closed-form expressions for INL almost never exist because PDF of order
statistics of correlated random variables is extremely complicated

Simulation of INL very time consuming if n is very large (large sample size

required to establish reasonable level of confidence)
- Model parameters become random variables
- Process parameters affect multiple model parameters causing model parameter correlation
- Simulation times can become very large

INL can be readily measured in laboratory but often dominates test costs
because of number of measurements needed when n is large

Expected value of INL, at k=(N-1)/2 is largest for many architectures
Major effort in DAC design is in obtaining acceptable INL yield !

Co



How many bits in this DAC?
How many bits in this ADC?
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Could even have random number generator generating 4 MSBs in this ADC

Manufacturers can “play games” with characterizing data converters

That is one of the major reasons it is not sufficient to simply specify the
number of bits of resolution to characterize data converters !



ENOB of DAC
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Concept of Equivalent Number of Bits (ENOB) is to assess performance of an
actual DAC to that of an ideal DAC at an “equivalent” resolution level

Several different definitions of ENOB exist for a DAC
Here will define ENOB as determined by the actual INL performance

Will use subscript to define this ENOB, e.g. ENOB .



ENOB,,, of DAC

Nonideal DAC s Tout

Premise: A good DAC is often designed ™| //

so that the INL is equal to %2 LSB. Thus T
will assume that if an n-bit DAC has an INL

INL of % LSB that the ENOB,, =n.
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Hence, for “good” DAC

REF

Thus define the effective number of bits, ncr by the expression
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where INL is in volts

Thus, if an n-bit DAC has an INL of 2 LSB
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~1=log,(2"")-1=n




ENOB,,, of DAC

Nonideal DAC i P
1
Premise: A good DAC is often designed N ]
so that the INL is equal to %2 LSB. Thus
will assume that if an n-bit DAC has an
INL of 72 LSB that the ENOB =n. 7 ]
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Thus, if an n-bit DAC has an INL of 72 LSB
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Note: With this definition, an n-bit DAC could actually have an ENOB,, larger than n



Integral Nonlinearity (ADC

Integral Non-Linearity (INL)
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Integral Non-Linearity (INL) is defined as the
sum from the first to the current conversion

- (integral) of the non-linearity at each code

(Code DNL). For example, if the sum of the
DNL up to a particular point is 1LSB, it means
the total of the code widths to that point is
1LSB greater than the sum of the ideal code
widths. Therefore, the current point will
convert one code lower than the ideal
conversion.

In more fundamental terms, INL represents
the curvature in the Actual Transfer Function

relative to a baseline transfer funclion _or the

difference between the current and the ideal transition voltages. There are
three primary definitions of INL in common use. They all have the same
fundamental definition except they are measured against different transfer
functions. This fundamental definition is:

Code INL = V{Current Transition) — V{Baseline Transition)
INL = Max(Code INL)

ADC Definitions and Specifications

For More Information On This Product,
Go to: www.freescale.com

Actually probably more than 3



Integral Nonlinearity (ADC)

Nonideal ADC
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Transition points are not uniformly spaced !

More than one definition for INL exists !
Will give two definitions here



Integral Nonlinearity (ADC)

Nonideal ADC
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Integral Nonlinearity (ADC)

Nonideal ADC
Continuous-input based INL definition
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INL (2N ) =Fin (Bin)-XINF (4in)

INL= max INL
O<iN<Trer {‘ (:IIN)‘}



Integral Nonlinearity (ADC)

Nonideal ADC
Continuous-input based INL definition
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Often expressed in LSB
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Integral Nonlinearity (ADC)

Nonideal ADC
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With this definition of INL, the INL of an ideal ADC is &, 4g/2 (for X11=% )

This is effective at characterizing the overall nonlinearity of the ADC but
does not vanish when the ADC is ideal and the effects of the breakpoints

are not explicit



Integral Nonlinearity (ADC)

Nonideal ADC
Break-point INL definition (most popular)
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Place N-3 uniformly spaced points between X, and Xy.1,designated Ler
|NLk =Xk - Tk 1<k <N-2

INL= max {INLg|}
2<k<N-2



Integral Nonlinearity (ADC)

Nonideal ADC
Break-point INL definition (assuming all break points present)
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Often expressed in LSB

INLk=ka_xFT' 1<k <N-2
X sB
INL = max {\INLk\}

2<k<N-2
For an ideal ADC, INL is ideally O



Integral Nonlinearity (ADC)

Nonideal ADC
Break-point INL definition

INL = Tk-ET1 1<k <N-2 -
X LsB .

INL= max {INLk/} c.
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INL is often the most important parameter of an ADC

INL, and INL_, are O (by definition)

There are N-3 elements in the set of INL, that are of concern

INL is a random variable at the design stage

INL, is a random variable for O<k<N-1

INL, and INLk+j are correlated for all k,j (notincl 0, N-1) fOr most architectures

Fit Line (for cont INL) and uniformly spaced break pts (breakpoint INL) are random
variables

INL is the N-3 order statistic of a set of N-3 correlated random variables (breakpoint
INL)



Integral Nonlinearity (ADC)

Nonideal ADC
Break-point INL definition
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X sB
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2<k<N-2

Xer1 Xer2 Lerzs Xera Xers Lere Lerr

» At design stage, INL characterized by standard deviation of the random variable
» Closed-form expressions for INL almost never exist because PDF of order
statistics of correlated random variables is extremely complicated

« Simulation of INL very time consuming if n is very large (large sample size required

to establish reasonable level of confidence)
-Model parameters become random variables
-Process parameters affect multiple model parameters causing model parameter correlation
-Simulation times can become very large



Integral Nonlinearity (ADC)

Nonideal ADC
Break-point INL definition

INL = Tk-ET1 1<k <N-2 -
X LsB .

INL= max {INLk/} c.
2<k<N-2 ¢

INL can be readily measured in laboratory but often dominates test costs
because of number of measurements needed when n is large

INL is a random variable and is a major contributor to yield loss in many designs
Expected value of INL, at k=(N-1)/2 is largest for many architectures

This definition does not account for missing transitions

Major effort in ADC design is in obtaining an acceptable yield



INL-based ENOB

Consider initially the continuous INL definition for an ADC where the INL of an
ideal ADC is X gg/2

Assume INL= vX| sBR

where X sgr is the LSB based upon the defined resolution, ng

INL=VRREF _ XREF

2NR 2neq+1

Thus

But ENOB =n,,

Hence
ENOB =ng-1-logs (v)



INL-based ENOB
ENOB = ng-1-logs (v)

Consider an ADC with specified resolution of n (dropped the subscript R) and INL of v LSB

¥, ENOB
Y2 n

1 n-1

2 n-2
4 n-3
8 n-4
16 n-5




Performance Characterization of Data Converters

« Static characteristics

Resolution

Least Significant Bit (LSB)

Offset and Gain Errors

Absolute Accuracy

Relative Accuracy

Integral Nonlinearity (INL)

Differential Nonlinearity (DNL)
Monotonicity (DAC)

Missing Codes (ADC)

Low-f Spurious Free Dynamic Range (SFDR)
Low-f Total Harmonic Distortion (THD)
Effective Number of Bits (ENOB)
Power Dissipation

R



Differential Nonlinearity (DAC)

Nonideal DAC
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Increment at code 4
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DNL(k) is the actual increment from code (k-1) to code k minus the ideal
increment normalized to X, g5
XLsB




Differential Nonlinearity (DAC)

Nonideal DAC
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Increment at code 4
Lout(k)-Lout(k-1)

A
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Increment at code k is a signed quantity and will be negative if Xq(K)<Xoy(k-1)

DNL= max {DNL (k)|
1<k<N-1

DNL=0 for an ideal DAC
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Monotonicity (DAC)

Nonideal DAC
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Monotone DAC Non-monotone DAC
Definition:
A DAC is monotone if Lo 7(K) > Loy7(k-1) for all k
Theorem:

A DAC is monotone if DNL(k)> -1 for all k



Differential Nonlinearity (DAC)

Nonideal DAC
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Theorem: The INL, of a DAC can be obtained from the DNL by the expression

INLk=§jDNL(i)
i=1

Caution: Be careful about using this theorem to measure the INL since errors
in DNL measurement (or simulation) can accumulate

Corollary: DNL(K)=INL,-INL, _,



Differential Nonlinearity (DAC)

Nonideal DAC
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Theorem: If the INL of a DAC satisfies the relationship
1
INL <§ XLSB

then the DAC is monotone

Note: This is a necessary but not sufficient condition for monotonicity
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Stay Safe and Stay Healthy !







